Conditional Sparse Coding and Multiple Regression for Grouped Data

نویسندگان

  • Min Xu
  • John Lafferty
چکیده

We study the problem of multivariate regression where the data are naturally grouped, and a regression matrix is to be estimated for each group. We propose an approach in which a dictionary of low rank parameter matrices is estimated across groups, and a sparse linear combination of the dictionary elements is estimated to form a model within each group. We refer to the method as conditional sparse coding since it is a coding procedure for the response vectors Y conditioned on the covariate vectors X. This approach captures the shared information across the groups while adapting to the structure within each group. It exploits the same intuition behind sparse coding that has been successfully developed in computer vision and computational neuroscience. We propose an algorithm for conditional sparse coding, analyze its theoretical properties in terms of predictive accuracy, and present the results of simulation as well as equities and brain imaging experiments that compare the new technique to reduced rank regression.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Conditional Sparse Coding and Grouped Multivariate Regression

We study the problem of multivariate regression where the data are naturally grouped, and a regression matrix is to be estimated for each group. We propose an approach in which a dictionary of low rank parameter matrices is estimated across groups, and a sparse linear combination of the dictionary elements is estimated to form a model within each group. We refer to the method as conditional spa...

متن کامل

Face Recognition using an Affine Sparse Coding approach

Sparse coding is an unsupervised method which learns a set of over-complete bases to represent data such as image and video. Sparse coding has increasing attraction for image classification applications in recent years. But in the cases where we have some similar images from different classes, such as face recognition applications, different images may be classified into the same class, and hen...

متن کامل

A Novel Image Denoising Method Based on Incoherent Dictionary Learning and Domain Adaptation Technique

In this paper, a new method for image denoising based on incoherent dictionary learning and domain transfer technique is proposed. The idea of using sparse representation concept is one of the most interesting areas for researchers. The goal of sparse coding is to approximately model the input data as a weighted linear combination of a small number of basis vectors. Two characteristics should b...

متن کامل

Joint estimation of sparse multivariate regression and conditional graphical models

Multivariate regression model is a natural generalization of the classical univariate regression model for fitting multiple responses. In this paper, we propose a highdimensional multivariate conditional regression model for constructing sparse estimates of the multivariate regression coefficient matrix that accounts for the dependency structure among the multiple responses. The proposed method...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012